13 research outputs found

    Co-delivery of curcumin and resveratrol by folic acid-conjugated poly(glycerol adipate) nanoparticles for enhanced synergistic anticancer effect against osteosarcoma

    Get PDF
    This study explored the co-delivery of curcumin (CUR) and resveratrol (RV) using folic acid-conjugated poly(glycerol adipate)-based nanoparticles (FPPC NPs) to enhance their synergistic anticancer effects against osteosarcoma. Based on synergistic toxicity experiments against Saos-2 cells, the optimal synergistic CUR:RV ratios were 1:2 and 1:3, which were used for co-encapsulation. Increasing the amount of RV in the co-loaded NPs did not affect the properties of the nanocarriers, but predominantly increased the loading capacity of RV, especially at the 1:3 ratio, by 1.8–2.0 times, mediated by their interaction. All co-loaded NPs demonstrated sustained release of CUR with a burst release of RV, and the presence of RV accelerated the initial release of CUR from the carriers. Furthermore, the co-encapsulated NPs maintained CUR and RV synergism and greatly enhanced their toxicity against osteosarcoma by at least 1.8 times compared to their corresponding solutions through profound accumulation of Saos-2 cells in the sub G1 phase and late apoptosis. The internalization of FPPC NPs into cells via endocytosis was dose- and time-dependent. This study offers a proof-of-concept for a potential co-delivery system using tumor-targeted poly(glycerol adipate)-based NPs to enhance the anticancer activity of CUR and RV against osteosarcoma

    Optimization of Magnetic and Paper-Based Molecularly Imprinted Polymers for Selective Extraction of Charantin in <i>Momordica charantia</i>

    No full text
    Charantin is a mixture of β-sitosterol and stigmastadienol glucosides, which effectively lowers high blood glucose. Novel molecularly imprinted polymers coated magnetic nanoparticles (Fe3O4@MIPs) and filter paper (paper@MIPs) were synthesized by sol-gel polymerization to selectively extract charantin. β-sitosterol glucoside was selected as a template for imprinting a specific recognition owing to its larger molecular surface area than that of 5,25-stigmastadienol glucoside. Factorial designs were used to examine the effects of the types of porogenic solvents and cross-linkers on the extraction efficiency and imprinting factor before investigating other factors (for example, amounts of template and coated MIPs, and types of substrates for MIP immobilization). Compared to traditional liquid–liquid extraction, the optimal Fe3O4@MIP-based dispersive micro-solid phase extraction and paper@MIP extraction provided excellent extraction efficiency (87.5 ± 2.1% and 85.0 ± 2.9%, respectively) and selectivity. Charantin was well separated, and a new unidentified sterol glucoside was observed using the developed high-performance liquid chromatography with diode-array detection (Rs ≥ 2.0, n > 16,400). The developed methods were successfully utilized to extract and quantify charantin from M. charantia fruit powder and herbal products. Moreover, these methods are rapid (<10 min), inexpensive, simple, reproducible, and environmentally friendly

    Recent Green Technologies in Natural Stilbenoids Production and Extraction: The Next Chapter in the Cosmetic Industry

    No full text
    Stilbenoids are well-known phytoalexins in the group of polyphenolic compounds. Because of their potent bioactivities, including antioxidant, antityrosinase, photoprotective, and antibacterial activities, stilbenoids are utilized as pharmaceutical active ingredient in cosmetic products. Thus, the demand for stilbenoids in the cosmetic industry is increasing. The main sources of stilbenoids are plants. Although plants are green and sustainable source materials, some of them do not allow a regular and constant supply due to seasonal and geographic reasons. Stilbenoids typically have been extracted by conventional organic solvent extraction, and then purified by separation techniques. This method is unfriendly to the environment and may deteriorate human health. Hence, the procedures called “green technologies” are focused on novel extraction methods and sustainable stilbenoids production by using biotechnology. In this review, the chemical structures together with the biosynthesis and current plant sources of resveratrol, oxyresveratrol, and piceatannol are described. Furthermore, recent natural deep eutectic solvents (NADES) for green extraction as well as plant cell cultures for the production of those stilbene compounds are updated

    Taxonomic Notes on the ‘Mahat’ (Artocarpus lacucha and A. thailandicus, Moraceae) Species Complex in Thailand

    No full text
    &lsquo;Mahat&rsquo; is a well-known medicinal plant utilized in Thailand. The Thai name &lsquo;Mahat&rsquo; has been used in many scientific articles for years. However, it is, unpredictably, a homonym of two scientific names in Flora of Thailand, i.e., A. lacucha and A. thailandicus. Additionally, both species are complex due to their high morphological variation. This causes difficulties in species identification especially when this Thai name is referred to as the scientific name for research publication, quality control of pharmaceutical raw materials, and registration of pharmaceutical products. In this study, we scrutinized the taxonomy of &lsquo;Mahat&rsquo; by detailed examination of its morphology and distribution, including molecular and qualitative phytochemical studies. Leaf surfaces were inspected using scanning electron microscopy. The phylogeny of both species was studied using DNA sequences of nuclear and plastid regions. Chromatographic fingerprints, focusing on the major active compound oxyresveratrol, were identified using high-performance liquid chromatography. According to our current study, phylogenetic evidence showed that some samples of both species were clustered together in the same clade and phytochemical fingerprints were almost identical. These results are valuable data for taxonomic revision in the near future and reveal the possible utilization of A. thailandicus as a new material source of oxyresveratrol in the pharmaceutical industry

    Comparative Phytochemical Profiling and In Vitro Antioxidant Activity of Extracts from Raw Materials, Tissue-Cultured Plants, and Callus of Oroxylum indicum (L.) Vent.

    No full text
    Extracts from raw materials from different plant parts, tissue-cultured plants, and callus cultures of Oroxylum indicum were analyzed for in vitro antioxidant activities determined by DPPH radical scavenging assay and evaluated for phytochemical profiles by TLC and LC-MS methods. The results were analyzed by principal component analysis (PCA) to evaluate the similarity. Stalk, pedicel, flower, seed, and whole fruit and callus extracts promoted strong antioxidant activity with high total phenolic and total flavonoid contents. The main phytochemicals found in extracts were baicalin, baicalein, and chrysin. Baicalein and baicalin promoted strong antioxidant effects and existed in most extracts while chrysin, which promoted very low antioxidant activity, was a major flavonoid in the leaves and tissue-cultured plants. From PCA analysis by total phenolic and total flavonoid contents, four main clusters including callus and tissue-cultured plant groups from different growth stages, flower group, and whole fruit and leaf group could be organized. When the results were analyzed by PCA using antioxidant activity with total phenolic or total flavonoid contents, all O. indicum samples could be grouped together except the extracts from the root of tissue-cultured plants which separated from the rest due to their low phytochemical contents and weak antioxidant activities

    Enhanced Production of Bryonolic Acid in Trichosanthes cucumerina L. (Thai Cultivar) Cell Cultures by Elicitors and Their Biological Activities

    No full text
    Bryonolic acid is a triterpenoid compound found in cucurbitaceous roots. Due to its biological activities, this compound gets more attention to improve production. Herein, we carried out efficient ways with high bryonolic acid productions from Trichosanthes cucumerina L., a Thai medicinal plant utilizing plant cell cultures. The results showed that calli (24.65 &plusmn; 1.97 mg/g dry weight) and cell suspensions (15.69 &plusmn; 0.78 mg/g dry weight) exhibited the highest bryonolic acid productions compared with natural roots (approximately 2 mg/g dry weight). In the presence of three elicitors (methyl jasmonate, yeast extract, and chitosan), cell suspensions treated with 1 mg/mL of chitosan for eight days led to higher bryonolic acid contents (23.56 &plusmn; 1.68 mg/g dry weight). Interestingly, cell culture and root extracts with high bryonolic acid contents resulted in significantly higher percent cell viabilities than those observed under control (1% v/v DMSO) treatment in Saos-2 and MCF-7 cells. The present study indicated that T. cucumerina L. cell cultures are alternative and efficient to produce the biologically important secondary metabolite

    Modification of Poly(Glycerol Adipate) with Tocopherol and Cholesterol Modulating Nanoparticle Self-Assemblies and Cellular Responses of Triple-Negative Breast Cancer Cells to SN-38 Delivery

    Get PDF
    This study aimed to fabricate new variations of glycerol-based polyesters by grafting poly(glycerol adipate) (PGA) with hydrophobic bioactive moieties, tocopherol (TOC), and cholesterol (CHO). Their effects on nanoparticle (NP) formation, drug release, and cellular responses in cancer and normal cells were evaluated. CHO and TOC were successfully grafted onto PGA backbones with 30% and 50% mole grafting. Increasing the percentage of mole grafting in both molecules increased the glass transition temperature and water contact angle of the final polymers but decreased the critical micelle concentration of the formulated particles. PGA-TOC NPs reduced the proliferation of MDA-MB-231 cancer cells. However, they enhanced the proliferation of primary dermal fibroblasts within a specific concentration range. PGA-CHO NPs minimally affected the growth of cancer and normal cells. Both types of NPs did not affect apoptosis or the cell cycle of cancer cells. PGA-CHO and PGA-TOC NPs were able to entrap SN-38, a hydrophobic anticancer drug, with a particle size <200 nm. PGA-CHO NPs had a higher drug loading capacity and a greater drug release than PGA-TOC NPs. However, SN-38-loaded PGA-TOC NPs showed higher toxicity than SN-38 and SN-38-loaded PGA-CHO NPs due to the combined effects of antiproliferation and higher cellular uptake. Compared with SN-38, the drug-loaded NPs more profoundly induced sub-G1 in the cell cycle analysis and apoptosis of cancer cells in a similar pattern. Therefore, PGA-CHO and PGA-TOC polymers have potential applications as delivery systems for anticancer drugs

    Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae[W][OA]

    No full text
    Quinolizidine alkaloids (QAs) are specialized metabolites found mostly in the Leguminosae. This study identifies lysine/ornithine decarboxylases involved in the first step of QA biosynthesis, highlighting the occurrence of lysine decarboxylase in QA-producing plants with regulation and evolution of QA biosynthesis

    Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species

    No full text
    Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species
    corecore